

"Approaching sing. theory via a
derived categorical techniques"

The gist: der. cats + sing. theory

why important
in modern AG/CT?

↳ different flavors, some
more natural via homo.
methods

↪
nat. DB, der. spl.

- Generation for Δ -cats
- Recent development via gen. techniques
- Future directions (if time permits)

Def: A Δ -cat in an

- (additive) cat. \mathcal{G} ↴ called shift
- auto equivalence $[\mathcal{I}]: \mathcal{G} \rightarrow \mathcal{G}$
- collection of diagrams

$$A \rightarrow B \rightarrow C \rightarrow A [\mathcal{I}]$$

↳ called dict \mathcal{D} 's

Satisfying certain axioms.

Def: \mathcal{G} Δ -cat

$f: A \rightarrow B$

A cone of f , denoted $\text{cone}(f)$, is any object C fitting into a dist. Δ - $A \rightarrow B \rightarrow C \rightarrow A \sqcup B$.

Def: \mathcal{G} Δ -cat, $\mathcal{C} \subseteq \mathcal{G}$ subcat

- \mathcal{C} is strictly full if it is closed under iso's in a full subcat,
- \mathcal{C} is Δ -subcat if it is st. ful and closed under shifts + cones
($\therefore A \rightarrow B \rightarrow C \rightarrow A \sqcup B \in \mathcal{C} \text{ if } A, B \in \mathcal{C}$
 $\Rightarrow C \in \mathcal{C}$)
- \mathcal{C} is thick if it is a Δ -subcat closed under dir. sums.
- $\langle \mathcal{C} \rangle$ denotes the smallest thick subcat of \mathcal{G} containing \mathcal{C} (always exist via Δ)

Q: X a Noetherian scheme (or ring!)

$\text{coh}(X)$ ab.cat. coh. sheaves

• $D^b_{\text{coh}}(X)$ bnd der cat of coh

Here objects are of the form

$$0 \rightarrow \mathbb{E}_s \xrightarrow{ds} E_{s-1} \xrightarrow{ds_1} \dots \xrightarrow{ds_{n-1}} E_0 \rightarrow 0$$

s.t. $d_i \circ d_{i-1} = 0$ and $E_i \in \text{coh}(X)$ $\forall i$

• $\text{Perf}(X) \subseteq D^b_{\text{coh}}(X)$ contr of "perfect complex"

There are objects $\mathbb{G}_n^{\oplus r_n}$ locally of the form

$$0 \rightarrow \mathbb{G}_n^{\oplus r_n} \rightarrow \mathbb{G}_n^{\oplus r_{n-1}} \rightarrow \dots \rightarrow \mathbb{G}_0^{\oplus r_0} \rightarrow 0$$

where $r_i \geq 0$. This is a thick subcat.

Th: X is regular $\Leftrightarrow \text{Perf}(X) = D^b_{\text{coh}}(X)$

↳ This takes a lot of work to show

Reduce to local case

Use Auslander-Buchsbaum-Serre

Def: \mathcal{G} Δ -cart. , $\mathcal{C} \subseteq \mathcal{G}$

- $\text{add}(\mathcal{S})$ smallest st. full subcart of \mathcal{G} closed under $[\cdot]$, finite coproducts, ad dir. sums
- Inductively define

$$\langle \mathcal{S} \rangle_n := \begin{cases} \text{add}(\emptyset), n=0 & \xrightarrow{\text{called 'n-th thickening'}} \\ \text{add}(\mathcal{S}), n=1 \\ \text{add} \left(\{ \text{cone}(\phi) : \phi \in \text{Hom}(\langle \mathcal{S} \rangle_{n-1}, \langle \mathcal{S} \rangle_1) \} \right), n > 1. \end{cases}$$

Rank: $\langle \mathcal{S} \rangle = \bigcup_{n=0}^{\infty} \langle \mathcal{S} \rangle_n$

\hookrightarrow gives an exhaustive filtration

Def: \mathcal{G} Δ -cart , $G \in \mathcal{G}$ is called

- classical gen. if $\langle G \rangle = \mathcal{G}$
- strong gen. if $\exists n \geq 0$ st. $\langle G \rangle_n = \mathcal{G}$

\hookrightarrow gives a finer way to study objects in \mathcal{G} by working up enough objects

↳ Classical and strong gen. play an important role in alg + geo (see later)

↳ Abstractly, they imply many "representability" results

Ex:

- $D_{\text{coh}}^b(X)$ admits st. gen. if X qc sep. quasi-ex. $\dim X$ (Adic)
↳ use Gabber near by.
- $D_{\text{coh}}^b(X)$ admits classical gen. if every closed subscheme of X has open regular locus (DL)
↳ cf. IT, ELS (§-2)
- $\text{Perf}(X)$ admits a classical gen.
if qc qc X (Bandal - Van de Bergh)

At times we can be explicit:

- X sm. quasi-proj / k , \mathbb{P} cycle
 $\bigoplus_{i=0}^{\dim X} \mathbb{Z} \otimes_{\mathbb{Z}} \text{st. gen. } D_{\text{coh}}^b(X) (= \text{Perf}(X))$
(Ravagnani, Orlare, BvdB)

• X quasi-poly var. / \mathbb{K} , \mathbb{H} ample

$\text{char}(\mathbb{K}) > 0 \Rightarrow F_*^e \left(\bigoplus_{i=0}^{\dim X} \mathbb{K}^{\otimes i} \right)$ st. gen.

for $D_{\text{coh}}^b(X) \forall e \gg 0$ (BILMP)

↳ \exists branch on e in terms
of co-depth and $\text{char}(\mathbb{K})$

• X var. over field \mathbb{K}

$f: \tilde{X} \rightarrow X$ modify. w/ \tilde{X} smooth / \mathbb{K}

Then ample on \tilde{X}

$\Rightarrow Rf_* \left(\bigoplus_{i=0}^{\dim X} \mathbb{K}^{\otimes i} \right)$ st. gen for $D_{\text{coh}}^b(X)$ (L.)

Th: (EL) X connected Noeth. affine scheme

$\mathcal{G} \subseteq D_{\text{coh}}^b(X)$ st. $\mathcal{G} = \langle G \rangle_n$

$\Rightarrow \mathcal{G} = D_{\text{coh}}^b(X)$ or $\mathcal{G} = 0$.

↳ \exists global cones (i.e. non-affine)

where this is false (e.g. SOD's)

of proj. bundles w/ $D_{\text{coh}}^b(X) = \langle G \rangle_n$

see BS 'consv.'

Prmle: \mathcal{G} Δ -cat

$G, E \in \mathcal{G}$ st. $E \in \langle G \rangle$

$\Rightarrow \exists n \geq 0$ st. $E \in \langle G \rangle_n$

blk $\langle G \rangle = \bigcup_{n=0}^{\infty} \langle G \rangle_n$

\hookrightarrow asking for smallest number of cones...

Def: $(ABIM, R)$ \mathcal{G} , \mathcal{S} -cat; $\mathcal{S} \subseteq \mathcal{G}$; $E, G \in \mathcal{G}$

• The level of E w.r.t. \mathcal{S} is

$\text{lev}^{\mathcal{S}}(E) := \inf \{n \geq 0 : E \in \langle \mathcal{S} \rangle_n\}$

\hookrightarrow set ∞ if no such n exists

• G classical gen. for \mathcal{G} ,

$\text{gen-time}(G) := \sup_{E \in \mathcal{G}} \{\text{lev}^G(E)\} - 1$

\hookrightarrow keeps track of cones

• The (Rough) dim of \mathcal{G} is

$\text{dim } \mathcal{G} := \inf \{\text{gen-time}(G) : G \text{ cl. gen. } \mathcal{G}\}$

Def: $(A \otimes M)$ \mathcal{G} Δ -cat, $S \subseteq \mathcal{G}$

- $\text{Int}^S(E) = \text{Int}^S(E[n]) \quad \forall n \in \mathbb{Z} \quad \forall E \in \mathcal{G}$
- $\text{Int}^S(B) \leq \text{Int}^S(A) + \text{Int}^S(C) \quad \forall \Delta \text{-} A \rightarrow B \rightarrow C \in \mathcal{G}$
- $\text{Int}^S(A \oplus B) = \sup \{ \text{Int}^S(A), \text{Int}^S(B) \} \quad \forall A, B \in \mathcal{G}$
- $F: \mathcal{G} \rightarrow \mathcal{G}' \text{ } \Delta\text{-functor, } \text{Int}^{F(S')} \subseteq \text{Int}^S(S) \quad \forall E \in \mathcal{G}$
 \hookrightarrow exact

Def: $(\text{htz})X$ affine Noeth. sch., $E, G \in \mathcal{D}_{\text{coh}}^L(X)$

$$\text{Int}^G(E) = \sup_{p \in X} \{ \text{Int}^{G_p}(E_p) \}$$

Ex: Fails for non-affine, e.g.

R'_C w/ $G_{R'_C}$ locally at stalks,
yet $G_{R'_C} \not\subseteq \langle G_{R'_C} \rangle$ blc

$$\text{Ext}^0(G_{R'_C}, G_{R'_C}) = 0$$

$$\text{Ext}^1(G_{R'_C}, G_{R'_C}) = 0$$

Rank: X Noeth.

$\xrightarrow{\varphi}$: $\text{Pry}(X) \times \mathcal{D}_{\text{coh}}^b(X) \rightarrow \mathcal{D}_{\text{coh}}^b(X)$ tensor adj.

loc: $(B \sqcup L \sqcup P)$ à la Steinmann

X Noeth. sch.

$E, G \in \mathcal{D}_{\text{coh}}^b(X)$; $\langle P \rangle = \text{Pry}(X)$

$F_P \in \langle G_P \rangle$ $\nparallel_{\varphi \in X} \Rightarrow E \in \langle P \overset{\wedge}{\otimes} G \rangle$

↳ allows to leverage local-to-global information for generation

Aside: A conjecture of Orlov states

if sm. var. X / k (ay char), are has

$\dim \mathcal{D}_{\text{coh}}^b(X) = \dim X$

- $\dim X = 1$

. various homog spaces

. Varas Fano, Cy var.

. toric var (using HMS)

(\Rightarrow) 's same for red. sing. varieties)

Ex: R reg. local sing

↳ walk through proof to all complex
to show $\langle R \rangle_{\text{dim } R+1} = D_{\text{ch}}^k(R)$

↳ mention Intz recent

\Rightarrow reg. quasi-affine ech in X
one has $\text{dim } D_{\text{ch}}^k(x) = \text{dim } X$.

Q: Can we use generation tech. to study
the sing. of a Noeth ech.?

↳ what does this mean?

↳ can we characterize?

Def: (L.) X var. / \mathbb{C}

$f: \widehat{X} \rightarrow X$ modif. \widehat{X} sm.

$\exists n \geq 0$ s.t. $\langle R \widehat{f}_* D_{\text{ch}}^k(x) \rangle_n = D_{\text{ch}}^k(x)$

Ex: Suppose X has rational sing., i.e.

$G_x \xrightarrow{\text{ntol}} Rf_* G_x$ is an iso. in $D_{\text{coh}}^b(X)$

Kovács $\Rightarrow X$ has rat. sing $\Leftrightarrow G_x \xrightarrow{\text{ntol}} Rf_* G_x$ spht

A conseq. to above in $N=1$.

We can ask the same to apply above.

Thm: (L., Venkatesh) X var. / \mathbb{C}

X has rat. sing. $\Leftrightarrow G_x \in \langle Rf_* D_{\text{coh}}^b(X) \rangle_1$
 $\Leftrightarrow D_{\text{coh}}^b(X) = \langle Rf_* D_{\text{coh}}^b(X) \rangle_1$

where $f: \tilde{X} \rightarrow X$ in modif. from smooth var.

Rank: $\exists N > 0$ s.t. $D_{\text{coh}}^b(X) = \langle Rf_* D_{\text{coh}}^b(\tilde{X}) \rangle_N$

$\therefore N$ "measures" failure of rat. sing.

↳ forthcoming work by De Degn,
Morati-Rahul & Venkatesh

Q: Can we bound N ?

Ans: (L. Venkatesh)

① X quasi-proj. cone / \mathbb{C}

$f: \tilde{X} \rightarrow X$ be mod. w/ \tilde{X} sm. (i.e. normal.)

$\therefore N \leq 1 + \sup_{p \in \text{sing}(X)} \{ \delta_p \}$ where

δ_p is the δ -inv. of $s \in X$

(i.e. $\text{length}_{\mathcal{O}_{X,p}} (A_p / \mathcal{O}_{X,p}) \omega | A_p$ int. close in $k(p)$)

② $X \subseteq \mathbb{P}_{\mathbb{C}}^n$ smooth hyperspace of degree $d \geq n$
cl.

C = affine cone of X associated to cone line on X

$\therefore N \leq 1 + 2(d-n)$

↳ factoring "1 DMNLU", we can
bound var. w/ iso. sing.

Now we turn gears to prime char.

Q: $\therefore R$ Noeth of prime char $\neq p$

\exists "Frob. map" $F_x: R \rightarrow R$

$$F_x^e := \underbrace{F_x \circ \dots \circ F_x}_{e \text{ times}}$$

- We say R is "F-finite" if F_x is finite
- We say F -finite R is "F-split" if $R \xrightarrow{n+1} F_x R$ splits
- BILMP showed $\langle F_x^e R \rangle_N = D_{\text{coh}}^b(R)$ Hesse where R F-finite

Q: $N=1 \hookrightarrow R$ is F-split?

A: Yes! (think why ...)

Q: R is an F-finite C.I. of char p

(i.e. $R = A/I$ where I f.g.
by regular reg. in reg.)

$$\text{codeth}(R) = \text{edim}(R) - \text{depth}(R)$$

$$N \leq p^{\text{codeth}(R)}$$

\hookrightarrow Extends to $L(CI's)$, no non-local rings

Q: So we have been generation can characterize and measure failure of certain sing. Can we use it to define a new class of sing?

Runk: X van / \mathbb{C} "rational sing"
 $f: \tilde{X} \rightarrow X$ modif. by sm. var.
 $\Rightarrow \mathcal{O}_{\tilde{X}} \xrightarrow{\text{nat'l}} \mathbb{R}\mathcal{L}_X \mathcal{O}_X, \text{ no}$

$$\begin{aligned} H^*(\tilde{X}, \mathcal{O}_{\tilde{X}}) &= \text{Ext}^*(\mathcal{O}_{\tilde{X}}, \mathcal{O}_{\tilde{X}}) \\ &= \text{Ext}^*(\mathbb{R}\mathcal{L}^* \mathcal{O}_X, \mathcal{O}_{\tilde{X}}) \\ &= \text{Ext}^*(\mathcal{O}_X, \mathbb{R}\mathcal{L}_X \mathcal{O}_X) \\ &= \text{Ext}^*(\mathcal{O}_X, \mathcal{O}_X) = H^*(X, \mathcal{O}_X) \end{aligned}$$

\therefore sheaf coh. of X sim. to \tilde{X}

\hookrightarrow very classical measure of the hom. alg. info on X

Runk: \cdot k perfect field of char $p > 0$

- X is proj var
- \mathbb{L} ample line bundle on X
- $BILMP \Rightarrow F_*^e \left(\bigoplus_{i=0}^{\dim X} \mathbb{L}^{\otimes i} \right)$ st. gen

Q: What happens if $F_*^e \mathcal{O}_X$ st. gen?

- This is always the case for X quasi-proj
- Do we confined to projective case

R: If alg. closed char $p > 0$

$$D_{\text{coh}}^b(\mathbb{P}^n) = \left\langle \bigoplus_{i=0}^n \mathcal{O}_{\mathbb{P}^n}(-i) \right\rangle_N$$

↳ Beilinson

$$F_*^e \mathcal{O}_{\mathbb{P}^n} = \bigoplus_{i \geq 0} \mathcal{O}_X(-i)^{\oplus \alpha(i, 0)}$$

where $\alpha(i, 0) = \# \text{ of monomials of degree } i$

not divide by any p -th power of a variable

↳ Rao (if not mistaken)

$$\therefore \text{Hess} \gg 0, \langle F_*^e \mathcal{O}_{\mathbb{P}^n} \rangle = D_{\text{coh}}^b(\mathbb{P}^n)$$

Def: X Noeth. F -fin.

X in 'F-thick' if $\langle F_*^e G_X \rangle = \mathbb{Q}_{\text{eh}}^b(X)$
 $\forall e \gg 0$

Q: What does F-thickness tell us?

What examples or counterexamples are there?

↪ \mathbb{P}^n + quasi-projective so far!

Ex: (toric varieties)

Hanlon - Hicks - Lazarev, Erman - Braun,

Favero - Huang

⇒ any toric variety in F-thick

Ex: Blow up \mathbb{P}^2 at 4 or less pts gen. pos.

⇒ in F-thick (Hara)

Ex: $X \subseteq \mathbb{P}_{\mathbb{K}}^{n+1}$ sm. quadric $\nexists k = \overline{k}$ s.t. $k > 0$

X F -thick if n even \nmid , $n \geq 2(p+1)$

or n odd \nmid , $n \geq 3p+2$

(Samchkin)

Ex: (BILmp)
 $R = \overline{R}$, $\text{char}(R) = p > 0$

C smooth proj. curves / R

C F -thick $\Leftrightarrow \text{genus}(C) = 0$

\hookrightarrow Use semistability of vector bundles

Ex: (BILmp)

$\pi: X \rightarrow C$ sm. proj. ruled surface

C sm. proj. curve \Rightarrow genus > 0

$R = \overline{R}$, $\text{char}(R) = p > 0$

$\Rightarrow X$ not F -thick

\hookrightarrow Play a game of SCD's and use curves class.

Ex: (BILmp) Abelian var over alg closed field char

are not F -thick

hen: (BILMP)

X in F -thick $\Rightarrow \exists n \geq 0$ s.t.

$$H^*(X, \mathbb{Z}^{\otimes n}) \neq 0 \quad \forall \mathbb{Z} \in \text{Pic}(X)$$

Q: Can we find more examples or counterexamples F -thick? What properties do they satisfy?

\hookrightarrow Mallay has recent work on the "fitting" case for del Pezzo's

\hookrightarrow F -thickness is a sort of "categorical singularity"

Q: Do these techniques fit into a bigger picture?

\hookrightarrow so far, characterize regularity
not sing in char zero

F -split in char $p > 0$

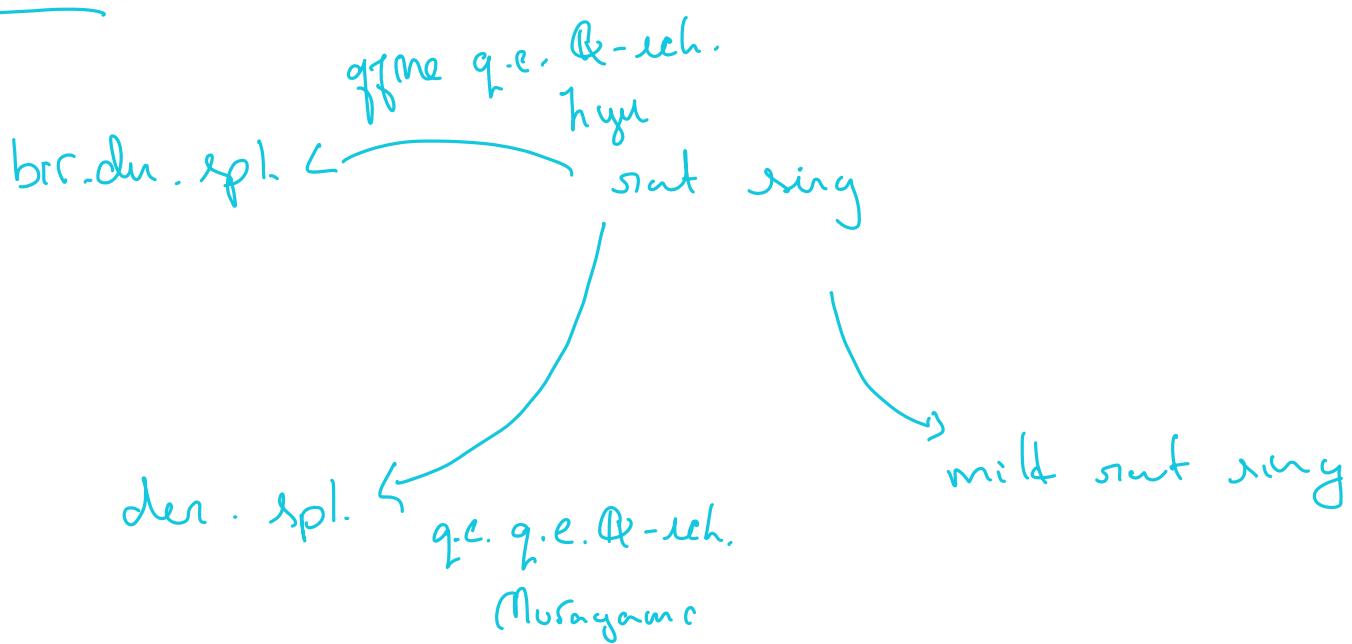
F -thickness

Γ measuring $\lfloor \cdot \rfloor + \Gamma$ homolog. glas to sing $\lfloor \cdot \rfloor$

Dy: X int. North.

- X has 'rat. sing' if $\exists f:\widehat{x} \rightarrow x$
modif from reg Ich s.t. $O_x \xrightarrow{\text{atrl.}} Rf_*O_x$
- X has 'mild' sent sing if $\exists f:\widehat{x} \rightarrow x$
modif from reg Ich. s.t. $O_x \xrightarrow{\text{atrl.}} Rf_*O_x$ splits
- (Bhatt) X in a 'der. spl' if $O_x \xrightarrow{\text{atrl.}} Rf_*O_y$
splits & $f: y \rightarrow x$ proper modif.
- (Kovacs) X in a 'br. der. spl' if
 $O_x \xrightarrow{\text{atrl.}} Rf_*O_y$ splits & $f: y \rightarrow x$ modif.

Rmk:



- In chap p: Elliptic in bds but not ds

- \mathbb{Q} -coh. categories relies on GR-varieties

Then: X int Noeth. TFAE

- X bds
- $\mathcal{O}_X \xrightarrow{\text{ntn}} Rf_* \mathcal{O}_{X'}$ split \Leftrightarrow blup $X' \xrightarrow{f} X$
 \hookrightarrow along norm ideal shg

Then X int Noeth

$\exists f: \tilde{X} \rightarrow X$ modify from orig.

TFAE

- X mild sing
- X bds

\hookrightarrow progresses no GR-varieties,
dualify, holds in char.

Con: X qc. qc. int. \mathbb{Q} -coh. TFAE

- rat sing
- mild rat sing
- dn spl
- brr dn spl.

} capture the sing (expected)
in \mathbb{Q} -char